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Typically, in order to obtain finite-size scaling laws for quantities in the micro-

canonical ensemble, an assumption is taken as a starting point. In this paper,

consistency of such a Microcanonical Finite-Size Scaling Assumption with its

commonly accepted canonical counterpart is shown, which puts Microcanonical

Finite-Size Scaling on a firmer footing.
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1. INTRODUCTION

Investigations of critical phenomena are focused on the properties of

systems of infinite size. The application of computer simulational methods,

however, supplies data for systems of finite size, and hence the need arises

to have an extrapolation method which allows to extract information about

the critical behaviour of the infinite system from finite system data. A

prominent example of such an extrapolation method is Finite-Size Scaling

as introduced by Fisher and Barber. (1) This method allows to determine

critical exponents of the infinite system from the system-size dependence of

certain canonical quantities of finite systems, and is therefore referred to as

Canonical Finite-Size Scaling (CFSS) in the following.
Conventionally, the canonical approach is favoured for the investiga-

tion of phase transitions. Recent results, however, reveal advantages of the

microcanonical ensemble, at least for the detection and classification of

phase transitions (2) as well as for the localization of critical points (3) from



finite system data. It is, inter alia, this fact which motivated the investiga-
tion of critical phenomena in the microcanonical ensemble and, to this

purpose, the development of a Microcanonical Finite-Size Scaling (MFSS)
theory.

The existing papers on MFSS (4–7) of various authors, although quite

similar in their titles, are somewhat difficult to compare, which is in partic-

ular due to the fact that the naming ‘‘microcanonical’’ is used for different

scenarios.2 Typically, (4, 5) in analogy to CFSS, an assumption is taken as a

2 Bruce and Wilding, (6) for example, define their so-called ‘‘microcanonical entropy density’’

via a second order differential equation (!) from the reduced microcanonical partition func-

tion (A.1).

starting point to derive MFSS laws which enable the determination of cri-

tical exponents of the infinite system from the system-size dependence of

certain microcanonical quantities of finite systems. In this paper, it is

shown that the MFSS Assumption as discussed in refs. 5 and 7 is consistent

with its canonical counterpart in the sense that validity of MFSS implies

validity of CFSS.

2. NOTATION

We consider classical statistical systems of hypercubic geometry in d
spatial dimensions with volume Ld, where L is the linear size of the system.
Our interest is focused on systems which undergo a continuous equilibrium

phase transition in the thermodynamic limit.

For notational simplicity, we restrict ourselves to Hamiltonians H of

the form

H : CQR, xWLd[e(x)−hm(x)] (2.1)

where C is the configuration space of the system and h is an external mag-
netic field. e : CQR, and m : CQR map elements from configuration space
onto their intensive interaction energy and magnetization value, respec-

tively. We consider partition functions which depend on 2+1 variables,3

3 The extension to more variables is straightforward. The reduction of the results to 1+1
variables is explicitely demonstrated in the Appendix.

whereof one is the inverse linear system size L−1. The microcanonical par-
tition function or density of states

W=W(e*, m, L−1) (2.2)

is written as a function of the intensive magnetization m and of the reduced
interaction energy

e* : =e−ec (2.3)
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where ec is the critical interaction energy. From the microcanonical parti-

tion function W, the microcanonical entropy

smic(e*, m, L−1) :=L−d lnW(e*, m, L−1) (2.4)

is obtained. The canonical partition function

Z(t, h, L−1) :=L2d F de* dm W(e*, m, L−1) exp 3
Ld(hm−e*−ec)

Tc(1+t) 4 (2.5)

is a Laplace transform of W where the range of integration is R2. The
canonical partition function is written as a function of the external magne-

tic field h and of the reduced temperature

t :=
T−Tc
Tc

(2.6)

where T is the temperature. For convenience, here and in the following we
set Boltzmann’s constant kB — 1. From the canonical partition function,

the canonical Gibbs free energy

gcan(t, h, L−1) :=−Tc(1+t) L−d ln Z(t, h, L−1) (2.7)

is obtained.

In the following, we assume spin inversion symmetry such that the

critical magnetization mc — 0 and the critical external magnetic field hc — 0.
If this is not the case, m and h have to be substituted by appropriate
reduced variables in the homogeneity relations of the next section.

3. FINITE-SIZE SCALING AND HOMOGENEOUS FUNCTIONS

Homogeneity relations can be taken as convenient starting points to
obtain finite-size scaling laws.

Let us consider the standard case of CFSS first. From renormalization

group arguments (8–10) it can be substantiated4 that the canonical Gibbs free

4 Although recent results of Chen and Dohm (11) question the general validity of Brézin’s (9)

arguments.

energy can be split into a regular and a singular part

gcan(t, h, L−1)=gcan
reg(t, h, L

−1)+gcan
sing(t, h, L

−1) (3.1)
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where the second term in is subject to the homogeneity relation

gcan
sing(t, h, L

−1) 4 l−1gcan
sing(l

att, lahh, l1/dL−1) (3.2)

valid asymptotically in the vicinity of the critical point (t, h, L−1)=(0, 0, 0)
for arbitrary positive values of the parameter l. The exponents at and ah
determine the static universality class of the corresponding infinite system.

The homogeneity relation (3.2) will be referred to as the CFSS Assumption
in the following, as it can serve as a starting point to derive scaling laws

which describe the finite-size scaling behaviour of various canonical quan-

tities (see e.g., ref. 12).

In contrast to CFSS, its microcanonical counterpart is not a standard

textbook formalism. To obtain a starting point for MFSS, it is argued (4, 5)

that similar relations as in the canonical case should hold for microcanon-

ical quantities. In analogy to Eqs. (3.1) and (3.2), we choose the following

formulation which will be referred to as the MFSS Assumption: The
microcanonical entropy can be split into a regular and a singular part

smic(e*, m, L−1)=smic
reg (e*, m, L−1)+smic

sing(e*, m, L−1) (3.3)

where the second term is subject to the homogeneity relation

smic
sing(e*, m, L−1) 4 l−1smic

sing(l
aee*, lamm, l1/dL−1) (3.4)

valid asymptotically in the vicinity of the critical point (e*, m, L−1)=
(0, 0, 0) for arbitrary positive values of the parameter l. Analogously to the
canonical case, the exponents ae and am determine the static universality
class of the corresponding infinite system. Scaling laws which describe the

finite-size scaling behaviour of various microcanonical quantities can be

derived from the MFSS Assumption. (5, 7)

4. CONSISTENCY OF MICROCANONICAL AND CANONICAL FINITE-

SIZE SCALING ASSUMPTIONS

In this section it is shown that the CFSS assumption (3.2) is a direct

consequence of the validity of the MFSS assumption (3.4), and the latter is

therefore consistent with the commonly accepted CFSS assumption.

The relation between the microcanonical entropy and the Gibbs free

energy can be established from definitions (2.4), (2.5), and (2.7):

gcan(t, h, L−1)=ec−Tc(1+t) L−d ln 3 L
2dF de* dm

×exp 3L
d

5s
mic(e*, m, L−1)+

hm−e*
Tc(1+t)644 (4.1)
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As in Eq. (3.3), the microcanonical entropy is split into a singular and a

regular part. To be able to deal with the latter, we make a short excursion

to its infinite system analogue. In the thermodynamic limit, sreg per
definitionem does not determine the critical behaviour of the system. In
order to take this into account, an expansion of sreg in powers of e and m
has to be of the form

sreg(e*, m)=
e*
Tc
+s−(e*, m) (4.2)

where odd powers of m vanish due to the spin inversion symmetry (see

Sect. 2) and the thermodynamically irrelevant constant term of the expan-

sion was set to zero. The linear term e*
Tc
fixes the value of the critical

temperature

1
Tc
=
“s(e*, m)
“e* :e*, m=0 (4.3)

The leading orders in e* and m of the remainder s− have to be such as not
to contribute to the leading asymptotic behaviour of thermodynamic

quantities in the vicinity of the critical point (e*, m)=(0, 0), which implies

lim
mQ0

lim
e*Q0

s−(e*, m)
ssing(e*, m)

=0 (4.4)

Now we go back to the case of finite system sizes. Analogously to the infi-
nite system case, for large but finite system sizes L the microcanonical

entropy is split into three parts

smic(e*, m, L−1)=
e*
Tc
+smic

sing(e*, m, L−1)+smic
− (e*, m, L−1) (4.5)

Now we define smic
sing as the part of s

mic which, apart from the additive term
e*
Tc
, contains the asymptotically leading terms in e* and m in the vicinity of
the critical point (e*, m)=(0, 0), i.e.,

lim
mQ0

lim
e*Q0

smic
− (e*, m, L−1)

smic
sing(e*, m, L−1)

=0 (4.6)

As it is the thus defined smic
sing for which we will obtain a homogeneity rela-

tion later on, contact is made to Eq. (3.3) and the naming ‘‘singular part’’ is

justified a posteriori. It is worth noting that e*Tc is not necessarily the only
term in Eq. (4.5) which is linear in e*. The coefficient of the linear term is a
function f of the system size L such that it converges towards 1Tc in the limit
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L−1Q0. Thus, for large but finite system sizes we write the term of smic

which is linear in e* as

e*f(L−1) % e* 1
1
Tc
+bL−q2 (4.7)

where q ¥ R+ and b ¥ R. The term e
Tc
is treated separately as indicated in

(4.5), whereas e*bL−q, in accordance with Eq. (4.6), is included in the sin-
gular part smic

sing of the microcanonical entropy. The exponent q, which
describes the scaling of the transition temperature with the system size, is

determined by the homogeneity relation obtained for smic
sing later on.

We continue our consideration of the canonical Gibbs free energy by

inserting (4.5) in Eq. (4.1) and making use of the geometric series. This yields

gcan(t, h, L−1)=ec−Tc(1+t) L−d ln 3L
2d F de* dm

×exp 3L
d

5s
mic
− +smic

sing+
1
Tc

(hm+te*) C
.

k=0
(−t)k644 (4.8)

where, for notational convenience, some functional dependencies have been

omitted. The radius of convergence of the geometric series restricts the

validity of (4.8) to values of |t| < 1. Since our intention is to show consis-
tency of finite-size scaling assumptions which hold asymptotically in the

vicinity of the critical point, our further proceeding will be to approximate

Eq. (4.8) for small t, h, and L−1, well within the interval of convergence. To
this purpose, higher orders in t and h are dropped to obtain an asymptotic
expression for the singular part of the canonical Gibbs free energy

gcan
sing(t, h, L

−1) 4 −TcL−d ln F de* dm exp 3L
d

5s
mic
− +smic

sing+
hm+te*

Tc 64
(4.9)

for t, h % 0, where the physically irrelevant additive terms constant in t and
h have been omitted. For large enough system sizes L, we argue that the
maximum of the integrand is located close enough to the critical point

(e*, m)=(0, 0) such that Laplace’s method (13) allows to drop higher orders
in e* and m in the integrand of (4.9). Equation (4.6) implies that this is

achieved by neglecting smic
− in the integrand of (4.9). Thus we obtain

gcan
sing(t, h, L

−1)

4 −TcL−d ln F de* dm exp 3L
d

5s
mic
sing(e*, m, L−1)+

1
Tc

(hm+te*)64
for t, h, L−1 % 0.
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Our next step will be to write down a similar asymptotic equality for

l−1gcan
sing(l

att, lahh, l1/dL−1) in such a way that we can deduce a condition on
smic

sing which leads to asymptotic equality of this expression with Eq. (4.10)

and which therefore implies validity of the CFSS assumption (3.2). From

(4.10) we can write

l−1gcan
sing(l

att, lahh, l1/dL−1) 4 −TcL−d ln F de* dm

×exp 3L
d

5l
−1smic

sing(e*, m, l1/dL−1)+
1
Tc

(hlah−1m+tlat−1e*)64 (4.11)

Substitution of the integration variables e*Ql1−ate* and mQl1−ahm yields

l−1gcan
sing(l

att, lahh, l1/dL−1) 4 −TcL−d ln F de* dm

×exp 3L
d

5l
−1smic

sing(l
1−ate*, l1−ahm, l1/dL−1)+

1
Tc

(hm+te*)64 (4.12)

where an additive term−TcL−d lnl2−at−ah was dropped, since constants in t
and h are not included in the singular part gcan

sing of the Gibbs free energy.

Equating (4.10) and (4.12) shows that validity of the MFSS assumption

(3.4) implies validity of the CFSS assumption (3.2), by which the proof is

completed.

5. CONCLUSION

In this paper, we have shown consistency of the MFSS Assumption

(3.4) and the CFSS Assumption (3.2), which puts previous papers on

MFSS on a firmer footing. As the consistency is shown in an asymptotic

sense for large system sizes L, the result does not necessarily imply that
both Finite-Size Scaling theories work equally well for given finite system-

sizes. In fact, it might be the case that in one ensemble or the other, the

Finite-Size Scaling region may be reached for smaller system sizes and the

quantities under investigation may converge faster towards their infinite

system value.

It is worth noting that the MFSS Assumption (3.4) also includes the

case where smic
sing is independent of one or more of the variables indicated.

This leads to the astonishing observation that even for a microcanonical

entropy which is independent of the system size, canonical quantities show
system size dependence according to the CFSS laws (see ref. 14 for a

detailed discussion). This, however, does not seem to be the relevant case

for the investigation of critical phenomena.
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A. REDUCED MICROCANONICAL OR CONSTANT ENERGY

ENSEMBLE

In contrast to the above, in the vast majority of papers on the inves-

tigation of phase transitions of magnetic systems in the microcanonical

ensemble (see references in ref. 7 for a detailed list), the reduced microca-

nonical partition function

W red(e*, L−1) :=F dm W(e*, m, L−1) (A.1)

is considered, where the range of integration is R. From W red, the reduced

microcanonical entropy

s red(e*, L−1) :=L−d lnW red(e, L−1) (A.2)

can be derived, which, of course, contains less information than smic. An

extrapolation LQ. of s red towards the thermodynamic limit allows merely

for an estimation of the zero-field properties of the infinite system under

consideration. This becomes obvious from

lim
LQ.

s red(e*, L−1)= lim
LQ.

L−d ln F dm exp{Ldsmic(e*, m, L−1)}

= sup
m

s(e*, m)=sup
m 3s(e*, m)−

hm
Tc(1+t)4:h/(Tc(1+t))=0

=: ŝ 1e*,
h

Tc(1+t)2:h/(Tc(1+t))=0
(A.3)

where

s(e*, m) := lim
LQ.

smic(e*, m, L−1) (A.4)

is the entropy of the infinite system and ŝ is a so-called Massieu function. (15)

In order to make contact with papers like ref. 6, we want to explicitely

transfer our main result to the reduced microcanonical entropy by showing

consistency of the homogeneity relation

s red(e*, L−1) 4 l−1s red(laee*, l1/dL−1) (A.5)

with the CFSS Assumption (3.2). This can be achieved by showing that

(A.5) is a direct consequence of the MFSS Assumption (3.4).

From (2.4), (4.5), (A.1), and (A.2), we obtain

s red(e*, L−1)=e*+L−d ln F dm exp{Ld[smic
− +smic

sing]} (A.6)
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Due to Eq. (4.6), for large system sizes L, Laplace’s method (13) allows to
drop the term smic

− in the exponent, and the asymptotic relation

s red(e*, L−1) 4 e*+L−d ln F dm exp{Ldsmic
sing(e*, m, L−1)} (A.7)

is obtained for e*, L−1 % 0. Making use of the MFSS Assumption (3.4)
yields

s red(e*, L−1) 4 e*+L−d ln l−am F dm exp{l−1Ldsmic
sing(l

aee*, m, l1/dL−1)}

(A.8)

where a substitution of the integral variable mQl−amm was performed.

Neglecting the terms constant in e*, a homogeneity relation for the singular
part of the reduced microcanonical entropy

s red
sing(e*, L

−1)

4 l−1(l1/dL−1)d ln F dm exp{(l1/dL−1)−d smic
sing(l

aee*, m, l1/dL−1)}

4 l−1s red
sing(l

aee*, l1/dL−1) (A.9)

valid for e*, L−1 % 0, is obtained as a direct consequence of the MFSS
Assumption (3.4).
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